Palais des Nations in Geneva, Switzerland

Global Methane Forum 2024

18-21 March 2024

Status and opportunities for measurement, reporting, verification of fugitive emissions from coal mining activities in India

Prof. Debadutta Mohanty

Senior Principal Scientist and HoS Nonconventional Gases Research Group CSIR-Central Institute of Mining and Fuel Research Dhanbad 826 001 JH India

Coal Joint Technical Session

18 March 2024

FUGITIVE EMISSIONS

are intentional or unintentional release of greenhouse gases

Comparison of CH₄ Emission on % basis with Countries and India from Sectors for 2016

Country	INDIA		US			AUSTRALIA	CHINA
Basin	Jharia	Raniganj	San Juan	Powder	Raton	Surat & Bowen	Ordos & Qinshui
Coal type	High volatile bituminous	high to medium volatile bituminous	Sub- bituminous	Medium-low volatile bituminous	High-medium volatile Bituminous	Low volatile bituminous & Anthracite	Lignite to anthracite
VMdaf	23.48-30.33	18.9		26-33	20.73-31.68	42.6-67.8	9.82-55.00
FCdaf	69.66 -76.51	81.1		30-41	46.68-69.43	20.2-61.7	45.0-92.0
Ro(%)	1.23 -2.03	1.00-1.44	0.65-1.45	0.31-0.66	0.77-1.05	0.6-3.5	0.35-4.26
Gas Content	13-16cc/g	2.07-12.41cc/g	479cc/g	45-105 cf/t	200-400 scf/ton	2.5-12.5m∛t	>4m³/t
GIP	8.78 BCM	7.7 TCF	50 TCF	30 TCF	32 TCF	43 TCF	123 TCF
Reference	Mishra et al., 1992; Karmakar et al., 2013, Kumar et al., 2015, Das et al., 2021; ONGC, 2000	Sharma et al., 2008; Panwar et al., 2017, DGH, 2019; Mohanty et al., 2019; Chattaraj et al., 2021	Kelso et al., 1988; Dudley, 1989; Scott, 1994; Dhir et al., 1991; Ayers, 2001	Blanton, 1994; Brown 2002; US Dept of Energy, 2002; ARI, 2002	Brown, 2002; Harrison, 2011	Gamson et al., 1992; Scott et al., 2007; Golding , 2011	Weihua, 2012; Wang et al., 2019; Tang et al., 2011

The Innovation Engine of India

Classific	ation by	y DGMS	based o	n coal	seam	gasiness

Gassiness degree	% of inflammable gas in general body of air	Rate of emission of gas m ³ /t of coal raised
I	below 0.1 and	below 1
11	above 0.1 and/or	1-10
III		above 10

EXISTING MINING PRACTICES

- A) TECHNOLOGIES IN OPEN CAST
 - SHOVEL-DUMPER
 - SURFACE MINER
 - DRAGLINE
 - HIGH WALL MINING
- **B) TECHNOLOGIES IN UNDERGROUND**
 - SEMI MECHANISATION: SDLs, LHDs
 - MECHANIZED B&P: CONTINUOUS MINER
 - LONGWALL MECHANIZATION : Shearer, etc.

CSIR-CIMFR

- Prepares the methane emission inventory on behalf of MoEFCC
- Developed country specific emission factors for coal mining and handling activities

INDIA Third National Communication and Initial Adaptation Communication to The United Nations Framework Convention on Climate Change

Chronology of India's Communications

ETF vs Existing Framework (BUR vs NC vs BTR)

Existing MRV arrangements

Enhanced Transparency Framework

REQUIREMENTS FOR ETF

- 2006 IPPC Guidelines
- Granular information: Data required in most disaggregated form
- Optimizing time and resource for inventorization
- Key Category based on lead contributor / highest level of uncertainties - Uncertainty in Data
- Country specific emission factor
- **Methane Emission Estimates: Activity data * Emission Factor**

India's share in global energy consumption to rise from 7% (2019) to 13-14% (2050)

India's Basin-wise Gas Production in 2019-20 (BCM)

Others includes Solar, Wind, Hydro, Bioenergy and other renewables and new energy sources | Source- BP Stats 2022, BPEO 2022 and **PPAC**

STATUS OF COALBED METHANE E&P IN INDIA

Blocks under Operation (Oct 22):

- Total 8 Blocks; West Bengal(3), Jharkhand(3) and Madhya Pradesh(2)
- Total acreage 2400 sq. km.
- Production rate 1.9 MMSCM/day
- Total Potential 280 BCM
- Investment Made: USD 2.2 Billion

Blocks awarded under SCBM-2021

- 4 Blocks; Jharkhand(1), Chhattisgarh(1), and Madhya Pradesh(2)
- Total acreage 3800 sq. km.
- Total prognosticated resource 190 BCM
 Special CBM Round-2022 (SCBM-22)

16 Blocks are offered in 7 states having area of 5817 sq.km.

AERIAL VIEW OF A CBM GAS GATHERING STATION AT JHARKHAND, INDIA

CSIR-CIMFR activities on unconventional gas resources

CIMER WO

Site selection, characterization and simulation studies for underground coal gasification

CONCLUDING REMARKS

- Gas based economy may provide a seamless energy transition in Indian context: Development of CBM, CMM, Shale Gas, UCG, EOR and ECBM projects
- Proper reservoir characterization is key to sustained production of unconventional gas resources
 - MRV in coal mines is at the core of planning and implementation of CMM utilisation and destruction projects
- Opportunities exits for technology innovations, stronger International collaborations and investments for implementation of appropriate mitigation measures and to monetise methane emission reduction

DISCLAIMER

The views/ideas expressed are solely of the presenter

ACKNOWLEDGEMENTS

Colleagues of CSIR-CIMFR, NATCOM Group and Sponsors are duly acknowledged for the support and encouragement

The earth is what we all have in common ...

Thank You

drdmohanty@cimfr.nic.in